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Abstract. Through episodes taken from various research studies in mathematics 
education carried out over the years by one of the authors, we bring evidence of the 
interference between natural language and specific language. Within a semiotic 
perspective we show how and why students’ learning experience entails the 
emergence of intuitive models and stereotypes in mathematics classroom. The notion 
of didactical contract allows us to interpret students’ stereotypical behaviors within 
the Chevallard’s triangle, Knowledge – teacher – student. 
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Sunto. Attraverso episodi tratti da varie ricerche in didattica della matematica, 
condotte nel corso degli anni da uno degli autori, mettiamo in evidenza l’interferenza 
tra linguaggio naturale e linguaggio specifico. All’interno di una prospettiva 
semiotica mostriamo come e perché l’esperienza di apprendimento degli studenti 
comporti l’emergere di modelli intuitivi e stereotipi nelle lezioni di matematica. La 
nozione di contratto didattico ci consente di interpretare i comportamenti stereotipati 
degli studenti all’interno del triangolo di Chevallard, Sapere - insegnante - studente. 

Parole chiave: linguaggio naturale e linguaggio specifico, stereotipi, modelli intuitivi, 
oggettivazione, mezzi semiotici di oggettivazione, sistema semiotico, funzioni 
semiotiche, significato. 

Resumen. A través de episodios tomados de diversas investigaciones en educación 
matemática, realizadas a lo largo de los años por uno de los autores, mostramos 
algunas pruebas de la interferencia entre el lenguaje natural y el lenguaje específico. 
Dentro de una perspectiva semiótica, mostramos cómo y por qué la experiencia de 
aprendizaje de los estudiantes implica la aparición de modelos intuitivos y 
estereotipos en los cursos de matemática. La noción de contrato educativo nos 
permite interpretar los comportamientos estereotípicos de los estudiantes dentro del 
triángulo de Chevallard, Saber - profesor - alumno. 

Palabras clave: lenguaje natural y lenguaje específico, estereotipos, modelos 
intuitivos, objetivación, medios semióticos de objetivación, sistema semiótico, 
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funciones semióticas, significado. 
 
 
1. Introduction  
We would like to start the article with the following episode: I leave this task 
to the real teachers. 

Seventh grade, students aged 12 or 13. The idea is to bring to light 
stereotypes (primarily linguistic) and conditionings in mathematical practice at 
school. I fall back on the “trick” of “Pretend that you are …” (D’Amore & 
Sandri, 1996). The task proposed is: “Pretend that you are a primary school 
teacher. … You want to explain to your third grade (8-year-old) students that 
the area of a rectangle is found by doing base times height”. Very many 
students limit themselves to writing a formula, others explain that the base is b 
and the height is h, while others confuse rectangle with triangle. Very few 
agree to write things out, really getting into the part. One girl did so, however, 
producing this little masterpiece: 

I don’t think I’m up to pretending that I’m a primary school teacher, but I can 
always try: there’s always a first time. Above all, if I really were to be a teacher, I 
would be very spontaneous and pleasant, so that dialogue with my students could 
be simple and direct. I would like to have a friendly and amusing relationship, so 
if I actually had to explain how to find the area of a rectangle, in view of my love 
of sweet things, I would think of the rectangle as a slab of chocolate. I have tried, 
but without success. I’m not able to explain that the area of a triangle is found by 
doing base times height. I leave this task to the real teachers. 

This episode is intriguing because apparently little mathematics is involved 
but nevertheless it tells us a lot about the learning of mathematics. The 
metacognitive awareness of this pupil is outstanding. Although reluctant, she 
gives a try in pretending she is a real teacher revealing self-confidence. She 
highlights her emotional needs for an effective learning of mathematics: 
spontaneity, pleasantness, communication, simplicity and directness, personal 
likes. She ends up with a “metacognition in the negative” since she perceives 
that she is unable to explain how to find the area of a triangle (rectangle) and 
doesn’t feel unease in expressing her difficulty. Above all, this short extract 
shows the pupil’s demand of emotional well-being and personal involvement 
in his/her learning trajectory. 

Luis Radford describes learning as a process of objectification that consists 
in “actively and imaginatively endowing the conceptual objects that the 
student finds in his/her culture with meaning” (Radford, 2008, p. 223). As 
pointed out by Godino and Batanero (1994) and Radford (2006), meaning is a 
double-sided construct consisting of a personal/individual meaning and an 
institutional/cultural meaning that are somehow distinguishable but 
inseparable, like two sides of the same coin. In his/her learning path the 
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student embodies the interpersonal and general meaning of mathematical 
concepts. 

Endowing conceptual objects with meaning clashes against an intrinsic 
difficulty that lies in the special ontological status of mathematics, whose 
objects do not allow ostensive references. The only way to access 
mathematical concepts is to have recourse to a wide range of semiotic 
representations that theoretical perspectives in mathematics education have 
positioned with different understandings within their system of principles: 
Duval’s functional and structural approach (Duval, 1995), Radford’s theory of 
knowledge objectification (Radford, 2008), Godino’s onto semiotic approach 
(D’Amore & Godino, 2006; D’Amore & Fandiño Pinilla, 2017), and 
Arzarello’s semiotic bundle (Arzarello, 2006), just to quote a few examples. 
Basically, in all perspectives the signs can play a representational role or serve 
as mediators of personal and socially shared activities. D’Amore and Fandiño 
Pinilla (2008) and Santi (2011) have shown that the two perspectives are 
complementary to each other and can be effectively coordinated to frame 
mathematical cognition. 

In their learning process, students have to handle a complex 
implementation of signs, that requires to properly coordinate several semiotic 
resources. Furthermore, they have to overcome Duval’s (1995) cognitive 
paradox that leads them to identify mathematical concepts with their 
representations. D’Amore (2001) accounts for the students’ lack of personal 
involvement in the learning process, by acknowledging the cognitive and 
emotional strain entailed in the attempt to access mathematical knowledge. 
Often their need to endow cultural objects with meaning diverts from the 
cultural meaning expected by the teacher and the school institution, by 
clinging to inappropriate intuitive models (Fischbein, 2002), stereotypes and 
the didactical contract (Brousseau, 1997). 

In section 2, we propose a theoretical framework that allows us to analyze 
the interplay between natural language and mathematical language within a 
semiotic perspective.  

In section 3, we analyze episodes taken from various research studies in 
mathematics education carried out over the years by one of the authors. Our 
aim is to highlight the interplay between natural language and other semiotic 
systems when students shift to higher layers of generality by addressing 
specific mathematical languages. 

In section 4, we draw some conclusions of our study. 
 
 
2. Theoretical framework  
As we mentioned in section 1, having recourse to semiotic representations is 
the only way to access mathematical objects. There are two complementary 
approaches towards signs. A socio-cultural approach based on Vygotskian 
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activity theory stances and a structural and functional approach. 
We present both approaches describing the basic features of Radford’s 

theory of knowledge objectification and Duval’s structural and functional 
approach. 

 
2.1. The theory of knowledge objectification 
The theory of knowledge objectification (TKO) pivots around the notion of 
mediated reflexive activity that conceives thinking as “a mediated reflection in 
accordance with the form or mode of the activity of individuals” (Radford, 
2008, p. 218): 
• activity refers to the individual and social agency towards shared goals, 

significant problems, operations, labor etc., within a cultural dimension 
that provides a system of beliefs, conceptions about truth, methods of 
inquiry, acceptable forms of knowledge; 

• reflection refers to the dialectical movement of the individual 
consciousness between his personal thinking, interpretations, emotions and 
feelings, perceptions and a historically and culturally constituted reality; 

• mediation refers to the artifacts that, in a Vygotskian sense, are constitutive 
and consubstantial to thinking since they allow us to carry out activity, i.e. 
they mediate activity; within TKO the system of artifacts that carry out 
activity are termed as the territory of artifactual thought and it includes 
objects, artifacts, gestures, natural language, symbolic language, icons, 
drawings etc. 

Advocating a pragmatic ontology, in TKO mathematical objects are “fixed 
patterns of reflexive human activity incrusted in the ever-changing world of 
social practice mediated by artifacts” (Radford, 2008, p. 222). In this view, 
mathematical objects lose any intrinsic, a priori, realistic nature. Nevertheless, 
as fixed patterns of mediated reflexive activity they acquire, within the 
cultural-historical dimension, a form of ideal existence: 

“Ideality” is rather like a stamp impressed on the substance of nature by social 
human life activity, a form of the functioning of the physical thing in the process 
of this activity. So, all the things involved in the social process acquire a new 
“form of existence” that is not included in their physical nature and differs from it 
completely – [this is] their ideal form. (Ilyenkov, 1977, p. 86) 

Radford (2016, p. 3) conceptualizes activity in terms of joint labor: 
The idea of joint labor seeks to restore to activity its most precious ontological 
force, namely, the dynamic locus where human existence creates and recreates 
itself against the backdrop of culture and history. Yet, with its utilitarian and 
consumerist orientation, contemporary mathematics classroom activity tends to 
produce and reproduce alienated students. It is argued that the search for non- 
alienating classroom activity requires a reconceptualization of the classroom’s 
forms of human collaboration and its modes of knowledge production. 
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(See also: D’Amore, 2015, 2018). 
We can say that, after their emergence as fixed patterns of reflexive human 

activity, mathematical objects become objects of knowledge for students 
involved in the learning path. TKO defines learning as a particular form of 
mediated reflection, a process of objectification: 

An opening movement towards others and the objects of culture. (…) To learn is 
not merely to acquire something in the corrupted sense of possessing it or 
mastering it, but to go to culture to find something in it. This is why the outcome 
of the act of learning is not the construction, re-construction, re-production, re-
invention or mastering of concepts: its true outcome is to be found in the fact that, 
in this encounter with the other and cultural objects, the seeking individual finds 
herself. This creative process of finding or noticing something (a dynamic target) 
is what I have termed elsewhere a process of objectification (Radford, 2002). 
(Radford, 2008, p. 222) 

The artifacts that mediate this special form of reflexive activity are called 
semiotic means of objectification. They are bearers of the historical and 
cultural development of mathematics and they allow students to transform 
interpersonal and ideal concepts into embodied objects belonging to their 
space-time and emotional experience. 

Semiotic means of objectification determine the mode of existence of 
mathematical objects in the pupils’ experience, i.e. they determine how the 
intentional “arrow” attends such objects. Referring to Husserl (1913/1931) 
they intertwine the noetic-noematic phenomenological layers that altogether 
result in the full meaning of the mathematical object. For example, we can 
deal with the circle through the kinesthetic movement of the compass, the 
definition in natural language, and using a second-degree equation in the 
algebraic symbolism. The TKO allows us to outline levels of generality 
(Radford, 2004) at which the student objectifies the mathematical concept. 
The level of generality specifies the degree of embodied experience involved 
in the reflection mediated by a particular semiotic means of objectification. 
Recalling the example mentioned above, the compass mediates the circle with 
a lower level of generality with respect to the second-degree equation. The 
demand of higher levels of generality, as the individual and cultural meanings 
converge, obliges the pupil to live a rupture with his/her embodied experience 
that can bewilder him and lower his personal implication and involvement in 
the learning process (Radford, 2003). 

The role of natural language as a semiotic means of objectification is the 
turning point in bridging the gap between the embodied experience of the 
pupil and the interpersonal meaning of the cultural object. Some research 
(Radford, 2000, 2002, 2004) in this topic has shown how in the generalization 
of patterns the deictic and generative use of natural language triggers and 
enhances the shift from the sensorimotor experience to the algebraic 
symbolism. Exposing the students directly to the algebraic language would 
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result in a shallow learning. Furthermore, as we reach higher levels of 
generality natural language allows us to keep the relation with the core of 
meaning that lies in the individual embodied experience. Natural language 
plays a key role in driving movement, organizing activity in time and space, in 
triggering rhythm, in singling out and individualizing objects, in activating and 
supporting schemes. This broad set of possibilities is the inerasable basis for 
the recognition of operational invariants, thus accessing higher layers of 
generality. A thorny issue is the relation between natural language and the use 
of the specific language of mathematics. It requires attention and awareness on 
the part of the teacher. The use of the specific language of mathematics is a 
learning objective that allows the student to reach a further layer of generality. 
It is achieved when embodied meaning has a solid basis to sustain the leap to 
specific mathematical language that objectifies definitions, generalizations, 
algorithms, inferential thinking etc. Without an underlying significant 
reflexive activity in the student’s personal experience, the use of specific 
language can hinder the learning of mathematics. Furthermore, the specific 
language of mathematics has a semantic density (D’Amore, 1999) that can 
disembody meaning just as it happens with symbolic language. In this 
situation the combined use of symbolic language and specific language can 
foster an unbridgeable gap between the individual meaning of the student and 
the cultural one, thus entailing a lack of personal implication and the 
emergence of intuitive models (Fischbein, 1992, 2002) and the didactical 
contract (Brousseau, 1997). For an in-depth discussion of this topic we refer 
the reader to D’Amore (1999, pp. 251–261). 

We analyzed the TKO within a pragmatist ontology of mathematics. 
D’Amore (2003) provides a detailed account of realist and pragmatist theories 
and concludes that there is not a definite boundary between the two 
perspectives. Ullmann (1962) highlights two complementary features that 
characterize the development of mathematical objects: the operational phase 
and the referential phase. On the one hand mathematical objects and their 
meaning emerge from and are objectified by reflexive activity, on the other 
hand it is necessary to linguistically refer to the entities that emerge from such 
activity. The dual nature of mathematical objects – as patterns of activity and 
as existing ideal entities in the culture – implies that also meaning and 
semiotics have a dual nature. We therefore need a semiotic perspective that 
accounts for the need, in the referential phase, to nominalize and transform 
signs in order to create relations, generalize, carry out calculations and proofs. 
Raymond Duval (1995, 2006, 2008) introduced semiotics in mathematical 
thinking and learning and devised a structural and functional approach to the 
use of signs. 

 
2.2. Duval’s structural and functional approach 
In the referential phase that we are addressing in this paragraph, Duval’s 
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(1995) approach could be framed within a realistic theory of meaning 
(D’Amore, 2003). In fact, according to Duval, every mathematical concept 
refers to objects that do not belong to our concrete experience. In mathematics, 
ostensive referrals are impossible, therefore every mathematical concept 
intrinsically requires working with semiotic representations, since we cannot 
display “objects” that are directly accessible. 

The lack of ostensive referrals led Duval to assign a constitutive role in 
mathematical thinking to the use of representations belonging to specific 
semiotic registers. From this point of view, he claims that there isn’t noetics 
without semiotics. “The special epistemological situation of mathematics 
compared to other fields of knowledge leads to bestow upon semiotic 
representations a fundamental role. First of all, they are the only way to access 
mathematical objects” (Duval, 2006). 

The peculiar nature of mathematical objects allows us to outline a specific 
cognitive functioning that characterizes the evolution and the learning of 
mathematics. The cognitive processes that underlay mathematical practice are 
strictly bound to a complex semiotic activity that involves the coordination of 
at least two representation registers. We can say that conceptualization itself, 
in mathematics, can be identified with this complex coordination of several 
representation registers. 

A semiotic system is devised by (Duval, 2006; Ernest, 2006): 
• a set of basic signs that have a meaning only when opposed to or in 

relation with other basic signs (for example the decimal numeration 
system); 

• a set of organizing rules for the production of signs from the basic ones 
and for the transformation of signs; 

• an underlying meaning deriving resulting from the relation of the basic 
signs that form structured semiotic representations. 

A representation register is a semiotic system that also accomplishes the 
functions of communication, objectification and treatment (Duval, 1996). 

D’Amore (2001) identifies conceptualization with the following semiotic 
functions, which are specific for mathematics: 
• choice of the distinctive traits of a mathematical object; 
• treatment, i.e. the transformation of a representation into another 

representation of the same semiotic register; 
• conversion, i.e. the transformation of a representation into another 

representation of another semiotic register. 
The very combination of these three “actions” on a mathematical object can be 
considered as the “construction of knowledge in mathematics”. But it is not 
spontaneous nor easily managed and represents the cause for many difficulties 
in the learning of mathematics when students struggle with the cognitive 
paradox. (See also: D’Amore, Fandiño Pinilla, Iori, & Matteuzzi, 2015; 
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D’Amore, Fandiño Pinilla, & Iori, 2013). 
Mathematical objects are recognized as invariant entities that bind 

different semiotic representations, when treatment and conversion 
transformations are performed, and as such they cannot be referred to directly. 
Duval identifies the specific cognitive functioning of mathematics with the 
coordination of a variety of representation registers. Both the development of 
mathematics as a field of knowledge and its learning are accomplished through 
such a specific cognitive functioning. 

Duval goes beyond Frege’s classical semiotic triangle (sinn-bedeutung-
zeichen) and identifies meaning with the couple (sign-object), i.e. a 
relationship between a sign and an object it represents. The sign becomes a 
rich structure that condenses both the semiotic representation (zeichen) and the 
way (sinn) the semiotic expression offers the object according to the 
underlying meaning of the semiotic structure. Meaning therefore has a twofold 
dimension: 
• sinn, the way a semiotic representation offers a mathematical object; 
• bedeutung, the reference to an inaccessible mathematical object (D’Amore, 

2010). 
Meaning making processes and learning require to handle different sinn that 
are networked through semiotic transformations without losing the common 
bedeutung to the invariant mathematical object. 

While in the operational phase the language plays a prominent role in 
sustaining the leap to higher levels of generality, in the referential phase the 
language sustains the coordination of representation registers via treatment and 
conversion. 

In fact, natural language is a special and more complex semiotic system. 
Basically, it has 4 discursive functions (Duval, 1995, p. 91) that characterize it 
as a language: 
• the referential function that allows us to designate an object; 
• the apophantic function that allows us to say something on the objects we 

designate under the form of complete statements; 
• the discursive expansion function that allows us to connect these 

statements in a coherent way; 
• the discursive reflexivity function that underlines the validity, the mode and 

the status given to the expression by those who produce it. 
The discursive functions of natural language are responsible for an appropriate 
control of the semiotic functions at a cognitive and metacognitive level. The 
key-players in the learning environment have to enact an aware understanding 
and control of the relation between: 
• the spontaneous and narrative use of natural language; 
• the specialized use of natural language; 
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• other semiotic registers used for definitions, deductive reasoning, 
algorithms etc. 

On the one hand in TKO, when synchronically used with other semiotic means 
of objectification natural language allows students to move along the different 
layers of generality in which the mathematical object is stratified. On the other 
hand within a structural and functional approach, natural language, in 
diachronic transformations of signs, allows students to access ideal entities and 
to deal with mathematics as an observational science: 

It has long been a puzzle how it could be that, on the one hand, mathematics is 
purely deductive in its nature, and draws its conclusions apodictically, while on 
the other hand, it presents as rich and apparently unending a series of surprising 
discoveries as any observational science. Various have been the attempts to solve 
the paradox by breaking down one or other of these assertions, but without 
success. The truth, however, appears to be that all deductive reasoning, even 
simple syllogism, involves an element of observation; namely, deduction consists 
in constructing an icon or diagram the relations of whose parts shall present a 
complete analogy with those of the parts of the object of reasoning, of 
experimenting upon this image in the imagination, and of observing the result so 
as to discover unnoticed and hidden relations among the parts. (…) As for 
algebra, the very idea of the art is that it presents formulae which can be 
manipulated, and that by observing the effects of such manipulation we find 
properties not to be otherwise discerned. In such manipulation, we are guided by 
previous discoveries which are embodied in general formulae. These are patterns 
which we have the right to imitate in our procedure, and are the icons par 
excellence of algebra. (Peirce, 1931-1958, 3.363) 

The teaching design cannot underestimate the need of personal meaning that 
drives the student’s activity both when learning at school and in his every-day 
experience. There are two basic constitutive elements that contribute to 
personal meaning: 
• operational invariants of schemata; 
• a system of convictions and interpretations. 
When teaching fails in aligning the cultural meaning with the personal one, the 
student accomplishes his need of meaning by having recourse to operational 
invariants, enhanced by beliefs and interpretations, that make him feel self-
confident and self-effective in a situation of cognitive and emotional dismay. 
Mathematics education refers to the operational invariants as intuitive models 
because of the sense of globality, immediacy and self-evidence they convey. 
The system of beliefs and interpretations that intertwine mathematical 
knowledge, teacher and pupil is referred as didactical contract. 

An appropriate use of natural language provides students with the 
cognitive and metacognitive strength to bear the strain in accessing 
mathematical meaning that requires to deal with a broad and composite 
semiotic activity. If it is disregarded because considered not rigorous nor 
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mathematical or biased by inappropriate uses of specific language, the student 
can turn to inappropriate intuitive models, stereotypes and the didactical 
contract. 
 
 
3. Students’ episodes  
We present accounts of episodes taken from various research studies in 
mathematics education carried out over the years by Bruno D’Amore and his 
collaborators. 
 
Episode 1. “Like that, I understand” 
At the age of 14, Italian children make an important “choice” for the future 
course of their studies: having finished middle school, and therefore having 
completed their compulsory schooling, they “decide” in which upper school 
they continue their education. Giovanni (I will use this fictitious name for him) 
is one of the many students who have been disheartened by middle school; he 
certainly does not shine because of his intelligence (whatever that word 
means) or his intuition (ditto), but he is a person who stays quietly in his seat. 
In middle school, especially in mathematics, he was enduring various attacks: 
the fact of not knowing how to solve “easy” equations, or how to calculate 
“simple” expressions in an orderly fashion; above all, the fact that he got lost 
when faced with the problem of “translating” from natural to algebraic 
language caused him to be branded as scholastically incapable. His destiny is 
sealed: he is not worthy of the luxurious desks of the grammar schools or the 
technical high schools and he will have to be content with the benches of a 
professional institute. His humble parents do not even understand exactly what 
has happened, but Giovanni is satisfied. He despises formalisms; above all he 
wants to work with his hands. All his friends respect him because at the age of 
12 he knows how to take his moped apart into an infinite number of pieces and 
put it back together again, and because he is the only one who has a girlfriend. 
Going to a professional institute means finally being able to work with 
engines, tools and machines; goodbye cursed compositions, goodbye 
monstrous expressions. But, alas, he realizes very quickly that things are not 
exactly like that. After the first few days, his mathematics teacher, introduces 
polynomials to Giovanni and the whole class (in which the Giovannis are 
many, almost the entire group). They have to compute sizable products, 
without quite knowing why, take out common factors, apply rules. Giovanni is 
in trouble, and with him all the Giovannis. Above all he is stymied by the 
language used by the teacher. This language vaguely resembles Italian, but so 
to speak, it is more compressed (we would say: terse, condensed in its 
expression, with an unambiguous syntax) … The teacher turns to us seeking 
help. We tell her explicitly that the choice of this mathematics topic does not 
seem a great idea; it is not suitable for those students, but according to the 
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compulsory government curriculum she has to develop it! We state, once and 
for all, that this teacher and those like her are not to blame. The blame lies 
with those who do not provide these teachers with cultural alternatives, 
thereby making them believe that polynomials etc. are the only mathematics 
that exists. Having made that clear, we suggest the teacher a “trick” that has 
worked very well elsewhere. That is, consider how mediaeval school books – 
those written in the vernacular – present the rules of algebra, explain the 
procedures, present the problem statements. On other occasions, by comparing 
those languages with the one we use now, the children have recognized that, in 
fact, our symbolism and, more generally, our method of doing mathematics, is 
very much simpler. We ourselves go into the class and experience the 
following episode. We present mediaeval abaci, Greek geometrical algebra 
and especially algebraic symbolism that is wholly verbal (rhetorical algebra), 
and we wait for the reaction obtained in earlier testing. Not in this occasion. 
This time Giovanni, that Giovanni, blurts out exactly these words: “But why 
don’t they do it like that anymore? Like that, I understand!”. 

Giovanni has been exposed to symbolic language without objectifying 
algebra at lower levels of generality. He missed the chance to deal with 
mathematical objects within his embodied space-time and kinesthetic 
experience, therefore he gave up his personal involvement in learning algebra. 

Natural language offers Giovanni the opportunity to fill the gap between 
his personal need for embodied meaning and the cultural interpersonal 
meaning objectified by symbolic language. The introduction of rhetorical 
algebra on the part of the researcher provides the student with the constitutive 
processes of algebraic thinking. Despite the redundancy and heaviness of 
rhetorical language, thanks to its generative and deictic potentials, Giovanni is 
able to recognize the operational invariants in his personal meaning made of 
space-time experience, movement, feelings and emotions. At this point, the 
use of symbolic language can prompt the leap to higher levels of generality, by 
addressing treatment and conversion operations. The referential, apophantic 
and discursive expansion functions of natural language drive the basic 
semiotic operations. They allow to refer to the algebraic entities, describe and 
characterize them, and embed semiotic transformations in a coherent and 
rational discourse. 

Natural language and mathematics: there is still much to consider in this 
relationship. Algebraic symbolism as an objective shared by society. 
Epistemological obstacles connected to the specific language of a discipline 
and to the pseudo-natural language in which the discipline is carried out or 
presented to the students. How many profound observations Giovanni gives 
us! 
 
Episode 2. “I divided the friends among the biscuits” 
Lugo di Romagna, an important agricultural center in the province of 
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Ravenna, Italy. A test concerning intuitive models (Fischbein, 1992) of 
multiplication and division, which are carefully described in D’Amore (1993a, 
pp. 168–185), contains the following item: 

“15 friends buy 5 kg of biscuits; how many kilos of biscuits should each 
one receive?”. 

41% of the students at the end of the first year of scientific high school 
answer with the operation: 15 ÷ 5. An intuitive model arises. It is based on a 
“wise” arithmetic practice assumed as a parasitic model (Fischbein, 1992), 
“always divide the larger by the smaller”. The experiment is also carried out in 
primary school, at the end of Grade 5, with an identical answer given by 67% 
of the students. When the primary school children are interviewed 
individually, one after the other, no one acknowledges spontaneously that one 
should (or that one could) perform 5 ÷ 15, unless the 5 kg are transformed into 
some large number of grams. But those who are interviewed in the first year of 
scientific high school react differently: all the students claim to have skimmed 
over this problem statement, whose semantics was sneaky, and they also admit 
that they were deceived by the fact that the numerical datum 15 came before 5. 
Someone also goes on to say that it was so easy to perform 15 ÷ 5 and that this 
has lowered his critical threshold. One of the cleverer students understands 
straight away, laughs, hits his forehead with his hand and exclaims: “Instead 
of dividing the biscuits among the friends, I divided the friends among the 
biscuits”. 

Fischbein (2002) defines intuitive thinking as an immediate self-evident, 
global, coercive form of thinking. We always urge, consciously or 
unconsciously, for intuitive thinking because of its immediacy, self-evidence 
and globality. It fosters positive emotions and a sense of well-being towards 
thinking and learning. Its strength can be traced back to embodied activity, 
which is objectified by sensorimotor experience and movement. Assigning the 
15 kg of biscuits among the five friends instead of doing the other way around 
is perceptually immediate and self-evident. When it is 5 kg of biscuits among 
the 15 friends the self-evident embodied meaning evaporates. The previous 
operational invariant for division, with its strong embodied meaning 
condensed in a parasitic model (Fischbein, 2002), is thus applied. The term 
“division” assumes a different meaning; it has to reach a higher layer of 
generality. Having recourse to natural language, it is interesting how the high 
school student is able to visualize the interaction, in space-time, between the 
kilos of biscuits and the number of friends. Thereby he is aware that he is 
addressing the pattern of division where the dividend is greater than the 
divisor and he is dividing the friends among the biscuits. Such an awareness 
leads the student to a new objectification of the problem in natural language: 

“5 kilos of biscuits must be obtained by multiplying the 15 friends by the 
kilos of biscuits per student”. 

The student is ready to use symbolic language: he writes 
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5 kg = 15 friends ´ n kilos/friend, therefore the kilos per student are 5 divided 
by 15. 

From a structural and functional point of view the congruence between 
natural language, symbolic arithmetical register and the iconic register in 
which we can visualize the biscuits and the friends accounts for the immediacy 
of the case in which the number of kilos of biscuits is greater than the number 
of friends. The linguistic control of the problem allows the clever student to 
notice the incongruence between the semiotic registers mentioned above when 
the number of students is greater than the number of biscuits units. The 
referential, apophantic and discursive expansion functions are crucial in 
organizing the distinctive features of the problem expressed in natural 
language, in order to perform the correct conversion into the arithmetical 
language and solve the problem through appropriate conversions. For a 
detailed analysis of the relation between intuitive thinking and semiotics we 
refer the reader to Andrà and Santi (2011, 2013). 

Stereotype, intuitive model, parasitic model, textual semantics, skim-
reading the problem statements, … how much more could be said. 
 

Episode 3. Metacognition in the negative: “The fact is that I don’t know …” 
During the long night from the 25th to the 26th March 1993, in Sulmona 
(Abruzzo, Italy), Vergnaud and D’Amore discussed metacognition at length. 
D’Amore orally reports: 

For me it was a real lesson in didactics that I will never forget. And neither 
Gérard has forgotten it, since each time we meet he reminds me of it. In short, he 
claimed that the didactic purpose of metacognition should always be expressed in 
the negative: what I don’t know, what I don’t know how to do. 

In fact, at that time the Bologna research team was investigating the 
“mathematics of time”. One of the problems asked: “Antonio, the baker, 
works from 9:00 PM on Tuesday to 6:00 AM on Wednesday. How many 
hours does he work?”. 

Given at different school levels, it produced a great variety of results. But a 
little girl in second grade (primary school), after drawing a baker kneading the 
dough, wrote exactly the following words: “I don’t know how to solve this 
problem and moreover I don’t know how many hours are in the night”. Of 
course, this “moreover” was understood as a “because”. 

A beautiful example of individual meaning that does not intersect the 
cultural one. She draws the baker kneading the dough, but she does not have a 
precise experience of how time passes during the night. The “9:00 PM to 6:00 
AM” expression is meaningless to her, outside her zone of proximal 
development and her embodied experience. Natural language allows her to 
translate and objectify the distance between time in her personal meaning and 
time as a cultural object. A narrative use of natural language could build a 
bridge for the use of sexagesimal system, she already uses to indicate time 
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during the day, also in the transition from 9:00 PM to 6:00 AM. 
This is an excellent and significant example of conceptual metacognition 

in the negative, but extended to a procedural context: if I knew how many 
hours there are in the night, then I would know how to solve the problem. 
Awareness, mastery, metacognition. It seems to us that this episode contains a 
world of possible paradigms. 
 
Episode 4. “Ah, but it can’t be done that way” 
The following problem suggested by E. Fischbein (1992) is well-known: “0.75 
liters of orangeade cost 2 dollars; how much does 1 liter cost?”. To this, one 
should respond with the banal operation 2 ÷ 0.75. Instead, it gives rise to a 
great variety of surprising reactions, even more surprising when compared 
with the reactions obtained with the following, apparently entirely analogous 
exercise: “2 liters of orangeade cost 6 dollars; how much does 1 liter cost?”. 
The same adults and students who respond to the second question with an 
immediate 6 ÷ 2, almost never give the above division as their answer to the 
first question, looking instead for more semantically controlled ways such as 
the proportion: 0.75 : 2 = 1 : x. Or they fall back on fractions, noting that 0.75 
is 3/4. Having brought out how the second problem could be solved by 
calculating 6÷2, we wondered if, by analogy, the students in 7th grade would 
accept that for the first problem one should calculate 2 ÷ 0.75. But the 
response of more than one student can be condensed into the protest of one 
young man: “Ah, but it can’t be done that way”. So, the analogy does not 
come into play: the numerical datum 0.75 destroys a possible logical analogy 
between the two problems. We even tried asking: 

“A liters of orangeade costs B dollars; how much does 1 liter cost?”, 
suggesting that numbers could be used in place of A and B and proposing the 
generic solution B ÷ A. Of course, no one proposed anything but natural 
numbers. When I attempted to put 0.75 (or 0.5) in place of A, at the moment of 
redoing B ÷ A, the refusal mechanism sprang up once again: the “good” 
operations can no longer be used, and you have to fall back on other methods. 

This is a paradigmatic example of non-congruence between the specific 
language of mathematics regarding division operations and the arithmetical 
language (idem). A conversion from the specific language used in the problem 
statement to the symbolic arithmetical language would allow us to solve the 
problem with simple calculations. The proportion establishes an immediate 
congruence between the problem statement and arithmetical symbolism. The 
symbol of division replaces the term “costs” and simple conversions and 
treatments make the problem apparently very easy. This turns out to be a trick 
that hides the lack of an adequate mediated reflexive activity, in the 
operational phase, to objectify division. The lack of a robust embodied 
objectification of division leaves us with a shallow and weak reification of this 
arithmetical operation and any semiotic transformation is meaningless. On the 
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basis of an embodied meaning it is reasonable to foster a leap to higher levels 
of generality for division. The use of conversion and treatment with the aid of 
the discursive functions of natural language is at this point significant. 
Otherwise, students and teachers are left with stereotypes, prisoners of the 
strength of intuitive models: under these conditions resorting to proportions 
can be interpreted as the formal delegation clause of the didactical contract 
(D’Amore, 1999; D’Amore, Fandiño Pinilla, Marazzani, & Sarrazy, 2010; 
Narváez Ortiz, 2017). The structure of the problem is identical to the one in 
example 2, by substituting the kilos with the dollars and the friends with the 
liters. The same remarks apply to the role of natural language. 

Stereotypes, mechanisms of analogy blocked by particular choices of 
numerical data, the role of data in the solution of a problem. Furthermore, 
intuitive models of division: indeed, if dividing means sharing out or 
containing, what could “divide by 0.75” possibly mean? And thus, once again, 
language. 
 

We continue with other interesting verbal contributions (D’Amore, 1993c). 
 

Episode 5. “The smallest number in the world” 
Let us suppose we ask a second-grade student: “What is the smallest number 
in the world?”. Setting aside the reasonableness of the question and the 
formality of the linguistic register used, about which we will speak later, the 
answer “Zero” would be considered an optimal result. But what would we 
think if the same answer was given by students in eighth grade (13-14 years 
old), after they had come to know the set Z of the integers? And if the same 
answer was given by students in the final secondary school years, students 
who already knew mathematical analysis? And by fourth year undergraduates 
in a mathematics degree course? It would not be a big surprise if the question 
was asked in the particular linguistic and mathematical environment that is 
defined in D’Amore and Martini (1998) as the “natural context”, i.e. in a 
context of natural and not formal language. 

A series of questions of various kinds is posed in natural, colloquial 
language, by using the linguistic register of everyday language, totally 
ignoring the formal language that is normally used when mathematics is done 
in the classroom (and that is the reason behind the linguistic formality of the 
question given above). Among all these questions we require the use of natural 
language. In this way we create, subtly but apparently very strongly, an 
environment that we call the “natural context”, formed by everyday language 
and natural numbers. At this point, the response “Zero” to the preceding 
question becomes clear. (It might be interesting to know that many students in 
the final secondary school years who have studied mathematical analysis and 
very many fourth-year mathematics undergraduates answered writing “–¥”. 
Perhaps it should also be said that the fourth year of the mathematics degree 
course where we conducted this experiment was not housed in an Italian 
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university). But the story does not end here. The next question was: “Which is 
smaller, –3 or +2?”. This question breaks out of the natural context … And 
nevertheless, there are many of the students who answer “+2” here, while 
leaving “Zero” for the preceding question. Others, however, go back and 
modify. (We must also say, in the interests of truth, that many students know 
that, in view of the existence of the negative numbers, the answer “Zero” is 
incorrect and is not good enough, but they do not know what to write. Those 
who reach the point of writing, in words, “doesn’t exist”, “there’s no such 
thing”, or something similar, are in a tiny minority, even among the primary 
school teachers interviewed). 

The notion of “big” and “small” is exactly at the point where 
personal/embodied meaning and cultural/disembodied meaning crash against 
each other. Small in what sense? In terms of absolute value, in terms of 
number ordering, or in terms of limit? “–¥” is big or small? The embodied 
notion of big and small needs to be transformed at a higher level of generality 
in the context of numbers. Furthermore, the structure of the semiotic register 
undergoes important changes that hinder an invariant notion of big and small 
as we move from natural numbers to integers. The presence of the plus and 
minus signs puzzles the students and mixes up the possible meanings of “big” 
and “small” mentioned above. The referential, apophantic, discursive 
expansion and discursive reflexivity functions in the context of number 
systems allow us to designate numbers in the different number systems, 
formulate claims regarding “big”, “small” etc., organize a discourse and 
recognize the validity, the mode and the status of the claims. The coordination 
of natural language, specific mathematical language, and symbolic language 
outlines the correct meaning of big/biggest and small/smallest “number in the 
world”. 

Here one might reflect upon the reasonableness of contexts, upon the 
influence that these have on mathematics classroom, upon artificial 
environments, upon the blend of natural and mathematical language, and once 
again upon stereotypes and intuitive numerical models. 
 
Episode 6. “My God!” 
Here is the account of an experiment carried out in a foreign country (outside 
of Italy) with upper secondary school students (pupils aged 15 to 20) (Gallo, 
Amoretti & Testa, 1989, p. 14): “Draw the rectangle ABCD with side BC 
along the straight-line r”. 
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And here are some of the responses (reproduced at a greatly reduced scale: the 
actual originals are available for those who would like to see them). 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
One of the mathematics teachers simply said: “My God!”, when we showed 
him the results obtained in his class. The discussion of the causes that underlie 
these results is well carried out in (Gallo, Amoretti, Testa, 1989, p. 14). But, in 
addition, we wanted to study the relationship between these responses and the 
conceptual difficulty of understanding the sense of the request in all its 
complexity, the problem of the use of stereotypes with regard to geometric 
figures, according to which rectangles have horizontal bases etc. In particular, 
on this occasion, our discussion with these teachers covered natural language 
and the non-neutrality of the language in which geometry is done and 
geometrical problems are presented. 

Objectification of geometrical figures is usually embodied in the 
perceptual space of the student. The individual’s experience of space is 
strongly influenced by the fact that we are immersed in gravity. He feels a 
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sense of proximity towards geometrical entities when semiotics means of 
objectification recall the vertical structure of our experience. The specific 
language of geometry and natural language tend to reinforce the relationship 
between the positioning of figures in the geometrical space and the embodied 
experience of physical space: “base”, “height”, “the horizontal and vertical 
lines”, for example. When the individual meaning of geometrical figures has 
to be aligned with their cultural meaning, the student lives a rupture in 
neglecting a privileged position according to the verticality of physical space. 
The use of linguistic terms such as “horizontal” and “vertical”, “base” and 
“height” do not allow to objectify the geometrical object at higher levels of 
generality. The use of natural language hinders an appropriate learning of 
geometry and can result in stereotypes and parasitic intuitive models. The 
solution of the problem requires a leap to higher levels of generality that allow 
the students to go beyond their perceptual experience of space. The solutions 
presented above show the strength and the need for embodied meaning on the 
part of the students. In fact, the students quit any logical control of the 
problem and give nonsense answers, a behavior typical of the didactical 
contract. The answers are nonsense as regards the institutional mathematical 
meaning, but they make sense at their personal level. The students are aware 
that their figures are not rectangles, or they do not accomplish the request of 
the problem, but they make sense in their effort, trapped in a parasitic strong 
model, to attend the request of the problem. The challenge of teaching and 
learning mathematics is to push students towards higher levels of generality 
without losing the core of their individual embodied experience. Once again, 
natural language can be a resource to objectify figures in the geometrical space 
starting from the physical one. 

This is a significant example that questions our understanding of 
perception. Often one believes that perception is just an intentional movement 
of consciousness towards a physical or mental object that exists per se. Instead 
the object’s mode of existence is entangled with the way our intentional act 
attends it. The problem for the student is to attend to the figure according to 
the constraints of the problem. There is no a priori rectangle that the students 
are unable to see. There are different modes of existence of the rectangle 
corresponding to the different intentional ways to attend them. The point is 
that the students’ intentional way of referring to the geometrical figure is 
different from the cultural and general one required for the solution of the 
problem. Furthermore, the student’s way of attendance is tainted by schemes, 
beliefs and interpretations. As some of the above drawings show, some 
students are convinced they have to connect points A and C to form a side of 
the rectangle. The educational issue is how to “domesticate” the student’s eye 
to attend geometrically the drawing proposed in the problem statement, i.e., 
borrowing Radford’s terminology, how to transform the biological eye in “the 
eye as a theoretician”. For an in-depth analysis of this topic we refer the reader 
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to Radford (2010). The eye is culturally “domesticated” also with the help of 
natural language that can support the transition from the experience of the 
physical space to the objectification of the geometrical one. When moving 
towards higher levels of generality, the student broadens the meaning of terms 
such as “height”, “vertical”, “bottom” and “top” with terms that objectify the 
rectangle independently from our physical perception of objects. For example, 
the term “height” becomes the “side” of the rectangle and the term “vertical” 
becomes the “angle between one of its sides and a straight line”. When the 
students are able, supported by the natural language, to imagine the rectangle 
as a specific relation between four segments and all its possible positions in 
the plane, the above problem becomes immediate. 

In terms of representation registers there is no direct correspondence – 
moreover such a correspondence is biased by a strong intuitive model of the 
rectangle – between the problem statement in natural language and the 
geometric figural representation register. The correct conversion would make 
the problem extremely simple. The discursive expansion and the discursive 
reflexivity are crucial in erasing the bias mentioned above, recognizing the 
distinctive features of the rectangle in the context of this problem, and 
establishing the correct conversion. This is a good example that shows that the 
semiotic control is one of the possible and necessary learning in mathematics 
(Bolondi & Fandiño Pinilla, 2008). Is it a mathematical, a semiotic or a 
linguistic issue? Where do we draw the boundaries between the three 
domains? 
 

Episode 7. “You can’t do that!” 
Very rapidly: primary school, we propose an impossible problem. The 
children all answer by simply adding the numerical data in the statement of the 
problem (a similar thing is reported in D’Amore, 1993b). We explain to the 
children that the problem is impossible. Nervous sniggers; the most impetuous 
youngster objects: “Ah, but you can’t do that! If the problem is impossible you 
should have said so. Our teacher does”. Yes, this is certainly the didactic 
contract and the transparency clause. Yes, this is certainly the Topaze effect 
(Brousseau, 1997; D’Amore, Fandiño Pinilla, Marazzani, & Sarrazy, 2010; 
Narváez Ortiz, 2017). But it also concerns the general model of a problem and 
stereotypes (Zan, 1991-1992). 

Impossible problems, also known as the “age of the captain effect” 
(Chevallard, 1980; D’Amore, 1999), are effective in unveiling the student’s 
beliefs, interpretations and expectations that contribute to their personal 
meaning regarding mathematics. Here, a problem in mathematics must have a 
solution, possibly obtained after some calculation. The teacher’s mathematical 
practice has been reified by the students into a strong operational invariant: 
“Given a problem, I have to find the solution”. When this expectation is 
deceived the students react: “You can’t do that!”: Brousseau’s didactical 
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contract at its climax. Natural language can support new narratives that trigger 
forms of metacognition in which the individual can recognize the beliefs and 
interpretations that trap their mind and find emotional and cognitive strategies 
to overcome them. 
 
Episode 8. “When the signs are different, you can’t simplify” 
We and a couple of friends who teach at the professional institutes in Bologna 
(Italy) are analyzing the “hidden curriculum”. The basic idea is that the 
inappropriateness and the incoherence of the students’ responses are 
sometimes global rather than local. In other words, the student sometimes 
makes a mistake because he is following some rule of his own that he has used 
for years. At times it has worked, and so he has expressed, generalized and 
accepted it. After that, he stubbornly follows it and does not understand why 
the teacher sometimes accepts it and sometimes not. In the context of algebra, 
we apply the “Pretend you are a teacher” trick. The student has to indicate 
which simplifications are correct and which are not from a list. One student, 
for example, recognizes that the simplification: 

 
is incorrect, in short: you can’t do that. Bravo, that’s right. But, when asked 
why, he responds: “Because there are two different signs”. This raises a doubt 
in our minds, and so we propose: 

 
You can’t do that either, for the same reason. Thus, the student has created for 
himself a rule described in words in a rather ambiguous fashion (yes, we 
know: that’s a euphemism); on some occasions it works well, and the teacher 
praises him, on other occasions it does not, and he does not understand the 
reason why. The student is locally coherent, as he follows this rule of his in a 
context in which it is globally incoherent. We understand this, he does not. All 
he understands is that something is not working, but he does not know how to 
explain the reason to himself. The set of rules, both those that are correct and 
those that are not (from an adult point of view), constitutes a “hidden 
curriculum” that is the true paradigm of the student’s algebraic behavior. 

Another example that shows how learning results in a shallow 
understanding of mathematics without an underlying mediated reflection. The 
student, under Duval’s cognitive paradox, is compelled to identify the 
mathematical object with the algebraic semiotic representation. The 
unavoidable lack of meaning is filled with operational invariants derived from 
the belief that mathematical meaning lies in some kind of symbolic 
manipulation. This behavior is driven, within the didactical contract, by the 
clause of formal delegation and the clause of formal justification demand 
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(D’Amore, 1999; D’Amore, Fandiño Pinilla, Marazzani, & Sarrazy, 2010; 
Narváez Ortiz, 2017). A linguistic control of the situation through the 
discursive expansion and discursive reflexivity functions could be an effective 
instrument to overcome the cognitive paradox and ascribe mathematically 
correct meaning to algebraic fractions. Too often, in high school, algebra is 
introduced immediately through symbols without the support of the discursive 
functions of natural language. 
 
 
4. Conclusions  
Mathematical thinking and learning is one of the most challenging and 
fascinating intellectual adventures. Nevertheless, it requires cognitive and 
metacognitive skills that allow students to master the broad and composite 
semiotic activity beneath the development of mathematics. We have shown the 
role that the natural language can have in mastering the semiotics that 
characterizes mathematical thinking and learning. 

Natural language in TKO, synchronically used with other semiotic means 
of objectification, plays a key role in driving reflexive mediated activity. It 
entails a set of possibilities that are the indelible basis for the recognition of 
fixed patterns of reflexive activity, thus accessing higher layers of generality. 
The discursive functions of natural language (in a structural and functional 
framework) are crucial, as a metacognitive support, in recognizing the 
distinctive traits of mathematical objects, in expanding reasoning and 
assigning validity and status to claims. Natural language is a pivotal 
representation register for treatment and conversion operations. 

Natural language can hinder the learning of mathematics when it discards 
the pupils personal meaning, made of embodied experience, feelings, 
emotions, interpretations, in its effort to encounter the cultural/institutional 
one. It is most interesting to see how students use the everyday language and 
feel no need to fall back on artificial or fabricated languages, even when they 
want to talk about mathematics. Could it be that this is an entirely adult need? 
If so, then this should become more expected and it should prove the Italian 
governmental primary school mathematics national curriculum (dating back to 
1985, today no longer in force) to be correct, where they say: “(…) natural 
language has expressive richness and logical potential that are suited to the 
needs of learning”. 

Natural language is the privileged context for communication as far as 
each individual is concerned. Denying this hinders the interpretation of 
students’ responses. Admitting it always provides a key to an extremely 
interesting reading. For many years we have been experimenting with the 
opportunity of doing as much mathematics as possible in Italian and not in 
mathematics jargon (D’Amore, 1993c). Our students already have a hard job 
using their everyday language well; demanding additional sophisticated 
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subtleties can be harmful (even more than pointless). Many other researchers 
agree with this position, for example Hermann Maier, who has devoted 
considerable efforts to this issue (see, for example: Maier, 1996). The fact is 
that some teachers think that natural language is not suitable for doing 
mathematics. Of course, our objectives must also include that of arriving at a 
perfect understanding of the use of mathematical language; but as an 
educational objective, not as a prerequisite. And besides, especially with 
younger students, more than doing mathematics, we should be talking about 
mathematics. 

All of us – and this is a law of the pragmatics of human communication – 
along with the messages we send out consciously, also provide messages that 
we do not want to provide but which the intended hearer of the message 
receives, with more or less explicit awareness. This takes place even in the 
most beautiful and perfect mathematics lessons in the world. Knowledge of 
the intuitive models we are inducing, perhaps unconsciously, in the students is 
of the greatest importance when we seek to understand what are the 
conceptual schemes that the students themselves make of the models in place 
of those we wanted to provide. The matter is rather complex, and we refer you 
to D’Amore and Frabboni (1996) for a much more exhaustive treatment. The 
teacher – who simply believes that the model put forward in the lesson 
coincides with the one formed in the head of the students to whom it is 
communicated – is wrong, highlighting quite a lot of naivety. Knowing that 
matters of this kind are problematic removes astonishment towards certain 
answers of our students. 

Stereotypes are just unavoidable. Combating them is one of the main jobs 
of the teacher. They are sneaky mental creatures always lying in wait. It is 
incredible how it only takes two or three examples that agree in some 
insignificant way before the student generalizes them in operational invariant, 
creating stereotypes. Culturally speaking, the student is a conservative who 
tends to jump at forming rules and models for everything: “So, every time you 
get zero it means that the equation is indeterminate”: claimed a student one 
day when we had worked and discussed a single example of an equation with 
him. A single example, and he had already created a rule for all cases. If we 
had not immediately worked out a counterexample for him, he would have 
registered the rule, with easy-to-imagine harmful effects on the next 
assignment. We observe, en passant, that this boy is an intelligent, critical 
young man, always ready to discuss, object and quibble. Except in 
mathematics, where he immediately forms stereotypes in order to reassure 
himself. Ah, what an image of mathematics he must have made over the years. 
No, we are not straying from the subject: the image of mathematics, the image 
of oneself doing mathematics, rules to follow without motivation (apart from 
that of getting a good grade), stereotypes, they all go hand in hand. They are 
different – but not all that different – facets of the same problem. 
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Teaching mathematics needs to know mathematics well and in depth. But 
to have success in the process of learning mathematics on the part of one’s 
own students, at whatever level of schooling, perhaps knowing mathematics is 
no longer enough. One needs to know the operating mechanisms of that 
complex machine that allows learning to take place. Since in the current state 
of knowledge this is impossible we ought at least to know those aspects that 
reach the surface, study them, understand them. Conducting research on these 
aspects is the best way to come to grips with them. 
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